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1. Introduction

“Lightweight Processes” are currently frés chic in the leading-edge UNIX
community, and “Object Oriented Programming Systems” (OOPS) are gaining in
popularity. Both of these ideas may be fundamentally sound, but seem to be suffering
somewhat at the hands of hypesters promoting them as the cure for everything from
designus inconceivus to tertiary code-bloat. Combining these two hot topics is sure-fire
way to get funding (and a paper accepted).

The Hub is a simple little operating system which is rather different from most of
its process-based brethren seen running about. Like with most systems, these differences
characterize both its strengths and weaknesses. The Hub has activities somewhat like
processes; called tasks (sorry, but there are only so many words for these things), but it
doesn’t have the overhead of traditional context switching. Hub tasks communicate
primarily with messages, but they don’t incur all the message parsing and multiplexing
overheads of other systems. The Hub could--use s bit of linguistic support which it
doesn’t get from most programming languages, but the C preprocessor and a modicum of
programming discipline largely fill the gap. The computation model of the Hub is
somewhat non-traditional to folks raised on the beatitudes of pure processes. And
finally, because the basic design doesn’t deal with protection domains, the Hub is a
Scout’s Honor programming environment like most little operating systems, and it will
run perfectly well within a UNIX process for debugging and development, or as an
implementation of user-level “light-weight processes.”

It also turns out that the Hub uses some of the central OOPS ideas, admittedly in
crude forms, but it is, none the less, an interesting platform for supporting, shall we say,
object-inspired programming. Hence the title: mix lightweight processes with object-
oriented glue, and you get a substrate which can support objecty kinds of things,
assuming they don’t weigh too much.

2. What'’s All the Hubbub, Bub?

The Hub was created by Gary Grossman, then with the Center for Advanced
Computation at the University of Illinois. The design was first implemented and
described by Masamoto [MAS] for his Master’s thesis under Grossman’s direction. The
current implementation is inspired by the system described in Masamoto’s thesis, but
revised considerably for portability, generality, and more concern for memory
management issues. : '

There are three major elements of the Hub world: the Hub Queue, which gives the
system it’s name, Hub instructions which are placed in the Hub Queue, and Hub tasks
which execute the instructions (see Figure 1). The sequence of operation is really quite
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simple: it mirrors the traditional fetch-execute cycle of a computer CPU.

The Hub dispatch loop (the Dispatcher) removes the next instruction from the Hub
Queue and inspects it to determine the recipient task and which specific task entry-point
should be invoked to execute it. The Dispatcher then makes an indirect subroutine call
via a task-specific methods vector supplying the decoded instruction fields as arguments.
The task method then runs to completion, adding any necessary new instructions to the
Hub Queue. When task method returns, the Dispatcher goes back to the top of the loop
to fetch the next instruction waiting in the Hub Queue.

2.1. Instructions Pre-Fetched While You Wait

The Hub Queue functions very much like the instruction prefetch buffer used in
modern CPU designs. Instructions which form the next fragment of the instruction
sequence but are not yet executing wait their turn in the prefetch buffer, and likewise in
the Iub Queue. Where do the instructions come from? In CPUs, the relentlessly
advancing program counter marches new instructions into the prefetch buffer. In the
Hub system, the stream of new instructions arises from the execution of other
instructions! One of the most important side-effects of interpreting a Hub instruction is
adding a new instruction or two to the Hub Queue, for without a steady supply of new
instructions, nothing happens in the Hub world.

Tasks communicate by placing instruction for each other in the Hub Queue. The
only way a task ever executes is for an instruction destined for it to bubble to the top of
the Hub Queue and be dispatched. For example, instead of the classical sleep(, ')/ wakeup()
process model, an interrupt routine in a device driver notifies its client “top half”’ of
service completion by placing an instruction destined for it in the Hub Queue. With only
very minor exceptions, state information is never shared directly between autonomous
execution domains (this includes both other tasks and interrupt code). Instead,
instructions carrying the necessary information are queued for execution by the recipient.
This results in very infrequent processor interrupt lockout, but most importantly, the
entire system is manifestly observable, if not truly synchronous. All activity flows
through the Hub Queue and the Hub Dispatcher, so one need monitor only that one
simple point to produce a very complete picture of exactly what is happening in the
system. With a little planning, it is even possible to record and replay instruction
sequences to assist in analyzing behavior.

2.2. Detailed Instructions

Hub instructions specify an opcode and several operands: source and destination
task identifiers, source and destination port identifiers, and a general-purpose operand
which is usually a pointer to a message buffer (see Figure 2). (There can be several
general-purpose operands, but rarely is more than one used.) The opcode is equivalent to
the method selector of languages like Smalltalk; it identifies which task entry-point
(method) is to be executed to interpret the instruction. This saves multiplexing and
demultiplexing in several ways. First, we avoid wasting the time spent assembling and
then parsing explicit message headers which simply indicate the requested function.
Second, decoding the instruction is very straightforward and very fast, and it only need
be optimized in one place. Third, task entry-points tend to do only one thing so the
path length is minimized and the code simplified.
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The source and destination task identifiers in Hub instructions are used to create

the sender and self references used for executing task entry-point methods. A task
. identifier is a handle to the task’s Task State Vector (TSV) as it is called, and tasks are
‘known by their TSV handle. A handle to the new TSV is returned to the parent task
‘when a new task is created.

_ The source and destination port identifiers are small integers which are available for

further multiplexing and demultiplexing within a method. In general, they are simply
integers and can take on any such value. Their name, however, arises from an array of
port structures in every task’s TSV, and port values usually index this array. A port is
simply a header for a doubly-linked queue which is included in the TSV port array.
These are included in the basic TSV overhead because TSVs often need queues, and
having a queue designation encoded in the instruction often prevents reinvention of
mechanism and improves observability.

Arbitrary message data can be carried in an instruction by incorporating a
reference to it in one of the general-purposed operands. This tends to avoid data copies
and provides for quite general messaging. The messages carried by Hub instructions are
usually said to flow from the source to the destination port of the participating TSVs.

2.3, Tasks - the Functional Units of the Hub

Tasks are the unit of execution in the Hub system. A task is represented by its
activation record, which is called a Task State Vector, or TSV. It is common for “task”
and “TSV” to be used somewhat interchangeably, although it isn’t strictly correct.
Associated with each TSV is a collection of functions called the Task Program {TP)
which the task executes in response to instructions. Each such function is called a Task
Program Entrypoint, or TPE. Mapping between the instruction opcode and the
implementing TPE function is done with an array of function pointers stored in a generic
section of the TSV. This binding allows task programs to be shared between tasks even
if the code is not strictly reentrant.

The Task State Vector contains two sections: a generic common prefix and a data
area specific to the Task Program being executed by the task. The TSV prefix contains
the port vector, vectors to the TPEs, and a few other miscellaneous fields. The TP-
specific data area is of variable size and is specified when then TSV is created. The
enlire state of the task is represented by data stored in this section of the TSV.

To summarize in object-speak, the Task Program is the methods collection for the
object implemented by the task, and since the task program is shared, multiple object
instances can be implemented which all share the same methods. Instance variables used
by the implementing methods of an object are stored in the object-specific portion of the
TSV. Class variables can be implemented (crudely, to say the least) by global variables,
or static variables within functions contained in shared TPE code.

The Hub Queue and the Hub Dispatcher, Hub instructions, and Tasks are the basic
inhabitants of the Hub world. The way these parts interact to do computations creates
a programming environment which is both familiar and strange at the same time.

3. Not Entirely Unlike Processes

This section will examine the programming style which arises from the Hub’s unique
structure. As can be discerned from the description so far, systems based on the Hub are
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composed of a collection of tasks which communicate with each other via instructions,
and these tasks implement higher-level abstractions, either abstract data objects or
compute objects like protocol machines. In point of fact, the Hub was born to do
communications processing. This is a programming area classically described on the
blackboard by clouds of processes blithely exchanging messages willy-nilly across
beautifully abstract interfaces. The implementation, on the other hand, is usually quite
different because of real-world performance requirements. One is easy to understand, the
other runs fast enough to be useful. The Hub is an attempt to assuage the disparity
between the pictures and the code.

Unmentioned until now is the central notion that all tasks in the Hub world obey
essentially the same set of legal Hub Queue instruction opcodes. This makes sense when
one reviews the structure of most communications software implementations, particularly
those based on the traditional picture with processes. Tasks primarily exchange data
with one task on one side, and do essentially the same thing with another task on the
other side. The exceptions to this are device drivers, which talk to hardware on one side,
but are tasks when viewed from the other, and multiplexing tasks which communicate
with potentially many other tasks.

Each Hub Task Program is expected to implement the following basic instructions
most appropristely for the function provided by the specific TP.

¢ Initialize - an instruction sent to a newborn task so it may initialize its instance
variables before it receives any other instructions. The final act of this TPE is to
call a Hub function which acknowledges the initialization. Sending instructions to a
task before it has acknowledged the initialization is considered a serious error.

e  Die - the task should clean up whatever it was doing and commit suicide by calling
the appropriate Hub function. Any shutdown synchronization between the
requestor and the dying task is purely their business.

¢  Timer - this instruction is posted to a task to notify it that a timer event has
expired. The arguments in the Timer instruction are specified when the timer event
is scheduled with a Hub primitive function.

¢ Data - this instruction is the basic data transfer mechanism. The argument
usually points to a buffer containing the data to be transferred to the destination
TSV and port. The usual protocol is that ownership of the buffer is also
transferred and becomes the responsibility of the recipient. Note that this is
essentially a write(} function to a task expecting to receive data. :

¢  Datarequest - this instruction is used to request a source to send data to the
originator. This is essentially a read() request from a task desiring data. This
instruction may or may not be used in all cases depending upon the flow control
protocol between tasks, and the level of asynchrony between the tasks. Packets
arriving from a network would typically be posted to an IP protocol machine with a
Data instruction, while a task like an FTP server might use a Datarequest
instruction when requesting data from its underlying TCP task.

®  Control - a task-specific control function (like foctl())

¢ Poll - an instruction for implementing polite busy waiting. Typically, a task
waiting for a bit to change in an interface would do the polling by posting a Poll
instruction directed to itself. When the Poll TPE gets entered, it checks the
appropriate bits and decides whether to post another Poll instruction, or whatever
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instruction is appropriate to continue what it was doing. This provides the
simplicity of busy waiting without hogging the machine.

o Debug - a task-specific function which manipulates debugging state. Hub systems

use some internal protocol for determining how the debug state is interpreted, but

there is a common mechanism for manipulating it. This encourages useful
~ debugging machinery be included in every TP.

o' Private - there are two instructions included which are valid instructions, but
*  whose interpretation is local to each TP. This number is easily changed for
~ whatever is needed.

e  Default - this is not an instruction, per se, but is 2 TPE which is entered like an

instruction whenever an opcode is not one of the above. (The name arises from the

C case statement.) :

Each Task Program Entrypoint is called from the Hub Dispatcher with two
arguments: a pointer to the private area of the appropriate TSV (a self context), and a
pointer to the instruction which caused this TPE to be executed. This has the
unfortunate side effect of requiring local instance variables be addressed with something

like
self —>> localvariable

and is one area where a little language support would be useful. In Pascal, the with
clause would do the trick; in C, a few preprocessor #defines reduce the pain.

The instruction pointer is supplied so the port values and sending TSVid can be
ascertained, as well as to pick up any message buffer pointers in the general-purpose
operands.

As can be seen, the Hub is non-blocking. There is no context switching code
necessary, and almost no machine-dependent assembler is required, save for that
necessary to glue interrupts into the require device driver functions, and for the two
functions which set and return the machine’s interruptibility state (equivalent to splf)
and spiz(] in the UNIX kernel). This implies the Hub needs only one stack segment for
execution. While a separate stack for interrupt routines an advantageous of some
modern processor architectures, there is no requirement for any such. support, and it can
probably be readily exploited.

4. The Structure of a Hub System

Hub systems tend to be be constructed from “task teams” with one task managing
the activity of several worker bees. Manager tasks tend to communicate with each other
to create any needed worker tasks and to establish the plumbing between them, leaving
the workers to do the actual work. This is much like the daemon daemon of 4.3BSD. In
an X.25 system currently being built with the Hub, a Level 2 interface manager task
watches link devices for signs of life. When the link starts up, the Level 2 interface
manager contacts the Level 3 protocol manager with a request for Level 3 service. The
Level 3 manager responds by creating a Level 3 protocol machine task and works with
the Level 2 manager to arrange the rendezvous between the Level 2 protocol machine and
the Level 3 machine. After the initial introductions, the two protocol machines interact
with each other and only interact with the managers when some terminating condition
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arises.

One important issue in any operating system is flow control. Flow control in this’
confext means the procedures and protocols which constrain the amount of data the
system must buffer at any one time. Several recent systems provide for synchronous
interactions between processes, thereby rendering the flow control issue essentia.lly moot.
However, the disadvantage of this simplification is that the maximum possxble
concurrency seems to be somewhat limited.

Flow control within a Hub system is visible at two levels. Topmost is the issue of
how many Hub instructions are currently awaiting execution. A runaway task which, for
example, queues two instructions for each it receives could quickly exhaust the Hub
Queue il it proceeded unchecked. This problem is handled by approaching the design
with a resource “conservation law” in mind. In other systems, violations of the
conservation laws result in bugs like memory leaks, or occasionally freeing an already free
resource. The nature of the Hub encourages explicit establishment of such laws as part
of the design process (this is both a strength and 2 weakness). :

The other flow control issue is one of how message llow is mediated between tasks.
The Hub system provides 2 modicum of queuing via the instructions in the Hub Queue.
Again, a central notion of Hub execution is that a task must always do something with a
message when it arrives. This is where the port queues come into play. Often, a task
can’t really do anything with a message because it algorithmically can’t proceed; a closed
TCP transmit window is a good example. The port queues can be used to sit on the -
data until the task can dispatch it, '

In such a scenario where there is potentially a large impedance mismatch between a
stream producer and a stream consumer, an explicit flow control strategy must be used.
For example, after a producer sends a buffer in with a Data instruction, it must await a
Datarequest instruction from the consumer returning the previously-sent buffer to be
refilled. By simply changing the number of allowable outstanding Data instructions to
be greater than one, we can easily implement sliding-window style multiple buffering
between tasks {or bulk throughput applications needing maximal concurrency. In other
situations like an Ethernet driver sending packets to an IP protocol module, the inter{ace
may not be How-controlled at all, relying on a simple policy of dropping excess packets
upon an overflow condition. The important point is that the level of sophistication
needed by any particular interface can be crafted from the available Hub facilities,
thereby neither overbuilding for some uses or underbuilding for others.

In concluding the discussion of the Hub environment as seen from inside, it should
be said that the Hub was intended to be a flexible framework for implementing what is
needed to do the specific job at hand. It has a modest set of facilities beyond those
described like timer management and buffer and storage allocation which, when taken
with the Hub facilities described above, form more of an operating systems toolkit,
rather than an ornate edifice replete with strictures. This is, of course, a double-edged

sword.

5. Closing Notes

There are two other areas which deserve comment, one because it was advertised,
and another because it is interesting to consider in light of the current architectural
trends.
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."‘:,. 5.1. Some Thoughts on Implementing Objects

‘ I hope by this point the notion of using the Hub to implement objecty systems,
possibly hidden behind some syntactic overcoat, is not completely absurd. There are
more than a few problems if you want real Smalltalk, but with a modicum of reserve, the
Hub can go a reasonable job of supporting object-style programming done in a more
traditional programming language. Note that this opinion arises from the belief that the
most important feature of object-oriented programming is one of encapsulation, with
limnited, static inheritance far short of the Smalltalk extreme probably being quite
adequate to realize the advantages of OOPS for most tasks. Others will certainly differ,
probably strongly. That’s what makes horse races.

. The other topic has to do with the notion of context switching in general and the
impact of evolution in machine architectures on the basic complexity of this mechanism
which is so central to traditional process-rich systems.

5.2. Context Switching and RISC Machines

The traditional process context switch involves saving the “visible” processor state
(register values, condition flags, interrupt level, floating point modes, memory
management state, etc.), and reloading the processor with a new copy of this same
information. In its full glory, a great many bits move around, and many, many machine
cycles can go by if the state is very complex.

RISC architectures are often characterized by large register stacks on the processor
chip which must be loaded and unloaded on context switches. These stacks are generally
much larger than those of their CISC friends and it is interesting to ponder the
performance impact of heavy context switching upon RISC performance. One useful
description is that a process-based system tends to be ‘‘broad,” meaning it spans many
different state domains (many relatively shallow stacks), while the state of a RISC
machine tends to be “deep,” meaning it excels at nested subroutine calls within one state
domain (stack). Since the Hub systems needs only one stack, and spends all its time
doing subroutine calls, it may be particularly suited to RISC architectures. This is an
interesting area to pursue experimentally with actual measurements!

6. You Have Tea and No Tea

In conclusion, the Hub is both traditional and radical at the same time. It is both
process-like and thread-like. It contains some objecty notions, and some explicit
programmer responsibility for managing the environment. Maybe the way to sce the
landscape is as a continuum between process-richness al one end, and traditional
monolithic realtime multi-threaded systems at the other, with the Hub as an operating
point somewhere in between. Traditionally, a process is a defined, fabricated object
which, like Algol, everyone understands but can’t quite nail down. With the advent of
Objects, which seem to be somewhat like processes in their persistence and activity, but
which somehow don’t really satisfy the intuitive definition of process, maybe process-ness
has become an analog value which can be possessed in greater or lesser degrees instead of
being an absolute attribute. This is certainly in the spirit of the Hub, and possibly
places the Hub at the confluence of Object-oriented programming concepts and operating
systems.
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Figure 1
The HUB System
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Figure 2
A HUB Instruction
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